B Physics with Hadron Machines

Manfred Paulini Carnegie Mellon University 2 May 2004 APS April Meeting Denver

- Introduction
 - B hadron producers
- The Past
- The Present: CDF & D0
 - Selected results from Tevatron
- The Future: BTeV & LHCb
 - Status and prospects
- Conclusion

Current Understanding of Matter

Flavour Changing Interactions in SM

Important questions about SM:

- 1. What is the origin of <u>electroweak</u> symmetry breaking?
 - => Higgs mechanism
- 2. What is the origin of <u>flavour</u> symmetry breaking?
 - => Quark mixing, CKM matrix

Flavour Changing Interactions:

- In SM flavour changing processes depend on CKM matrix
- Individual matrix elements not predicted by SM- must be measured • Test flavour changing interactions by flavour changing interactions

$$egin{pmatrix} egin{pmatrix} egi$$

B hadron decays measure 5 CKM matrix elements

Goal of present & future B physics:

- in all possible ways
 - => Theoretically clean modes versus experimental accessibility
- Measure sides and angles of CKM triangle in many ways
 - => Overconstrain triangle

B Hadron Producers

$$\Upsilon(4S): e^+e^- \to \Upsilon(4S) \to B\bar{B}$$

The Players: ARGUS & CLEO (Pioneers) BaBar & Belle (B Factories)

ARGUS:

B Hadron Producers

$$Z^0$$
: $e^+e^- \rightarrow Z^0 \rightarrow b\bar{b}$

The Players: ALEPH, DELPHI, L3, OPAL SLD

B Hadron Producers

Tevatron: $p\bar{p} \rightarrow b\bar{b}X$

- Lowest order $\mathcal{O}(\alpha_s^2)$ diagrams for $b\bar{b}$ production
 - (a)-(c) gluon-gluon fusion
 - (d) quark-antiquark annihilation

CDF:

The Players:

CDF & D0

Other B producers: Hera-B, FNAL fixed target

The Future: Atlas, CMS, LHCb, BTeV

 Why the (→*▼**©↓©) do we want to do B physics at a hadron machine?

B Physics at Hadron Machines

Advantages of B Physics at Hadron Machine:

All B hadrons are produced: $B^0, B^+, B_S^+, B_c^+, \Lambda_b^0$ Enormous cross section:

- B-factory: $\sigma(\Upsilon(4S) \to BB) \sim 1 \text{ nb}$

- Tevatron: $\sigma(par{p} o bar{b}) \sim 100~\mu {
m b}$

B Trigger at Hadron Machines

Comparison with charm production

- Total inelastic cross section:
 σ(total)/σ(b)~1000
- → It's all about the trigger!

B Triggers:

- B trigger based on leptons
- → Dilepton trigger: J/ψ, B mixing
- → Single lepton: semileptonic B decays
- Hadronic track trigger (CDF)
 (exploit 'long' B lifetime)

Level 1: Fast track trigger (XFT) finds charged track with $p_T > 1.5$ GeV/c

Level 2: Link tracks into silicon; require track impact parameter > 100 μm (SVT)

Access to hadronic B decays => B physics program fully competitive with B factories

A Brief History of Time

Beauty Production at UA1:Observation of high-pT muon pairs from semileptonic decays of bb=

First fully reconstructed B mesons at a hadron collider:

B Physics in Run I

Successful B physics program at Tevatron in Run I:

B Cross Sections

CDF B Lifetimes

B lifetimes

CDF Δm_d Results

B mixing

Discovery of B_C meson

Evidence for $\sin 2\beta \neq 0$

Tevatron Run II

Tevatron Performance:

- Tevatron has been working well in 2004
- Record initial luminosity =
 = 7.2 x 10³¹ sec⁻¹ cm⁻²
- >300 pb⁻¹ on tape
- ~100-250 pb⁻¹ used for analysis
- CDF & D0 performing well
- Detector efficiency ~80-90%

Run II: CDF Detector

The Upgraded CDF Detector:

- Tracking upgrade:
 - Silicon:

system

Beampipe layer + 5 layers + 2/1 outer (forward) layers (radial 1.5 - 28 cm) Full coverage of luminous region; Si tracking up to $|\eta|$ < 2

Drift Chambe

Silicon Vertex Detector

Run II: D0 Detector

The Upgraded D0 Detector:

What's new at D0:

- New detector elements:
 - solenoid,silicon tracker,fiber tracker
 - new preshower detector
- Improved muon system
- Enhanced trigger system
- Extra shielding around beamlines

Tevatron Results at APS 2004

List of CDF & D0 charm & bottom results at APS 2004:

- Observation of Semileptonic B Decays to Narrow D** Mesons
- Flavor Oscillations in Bd Mesons with OS Muon Tagging
- Bd mixing with Same Side Tagging
- Measurement of Lifetime Ratio for B0 and B+ Mesons
- Measurement of B Lifetimes in B->J/psi K Decays
- Observation of X(3872)
- Limit and Sensitivity for Rare Decay B_s→μμ
- Polarization Amplitudes in B→VV
- BR and A_{CP} in $B^+ \rightarrow \phi K$
- B⁰ Mixing with SST in Fully Reconstructed B Decays
- Study of Jet Charge Tagging
- Measurement of Hadronic Moments in Semileptonic B Decays
- Pentaquark Search in $\theta^+ \rightarrow pKs$
- Pentaquark Search in $\theta_c \rightarrow pD^*$
- Pentaquark Search for **Ξ**(1860)
- $B_s \rightarrow VV$ Lifetimes
- Measurement of B Hadron Masses
- Measurement of BR(B $^+$ \rightarrow J/ $\psi\pi$)
- Observation and BR of $B_s \rightarrow \phi \phi$

- Search for $B_c \rightarrow J/\psi \mu X$
- Soft-Electron Reconstruction for $B_c \rightarrow J/\psi eX$
- BR and A_{CP} in $D^+ \rightarrow \pi^+ \pi^- \pi^+$

(List might be incomplete)

Selected Run II Results

Exclusive B Decays:

Accumulate large samples of fully reconstructed B hadrons:

finds in 250 pb⁻¹:

$$B^+ o J/\psi K^+ \; ({
m N} \sim 4300) \ B^0 o J/\psi K_S^0 \; ({
m N} \sim 375) \ B^0 o J/\psi K^{*0} \; ({
m N} \sim 1900) \ B_s^0 o J/\psi \phi \; ({
m N} \sim 400) \ \Lambda_b o J/\psi \Lambda \; ({
m N} \sim 52)$$

Selected Run II Results

Exclusive B Decays:

Precision mass measurements from exclusive B -> J/ψ X

$$m(B^+) = (5279.10 \pm 0.41 \pm 0.34) \; \mathrm{MeV}/c^2 \ m(B^0) = (5279.57 \pm 0.53 \pm 0.30) \; \mathrm{MeV}/c^2 \ m(B_s^0) = (5366.01 \pm 0.73 \pm 0.30) \; \mathrm{MeV}/c^2 \ m(\Lambda_b) = (5619.7 \pm 1.2 \pm 1.2) \; \mathrm{MeV}/c^2 \ (\text{current world best values})$$

B Lifetimes

<u>τ(B+)/τ(B0)</u> from Semileptonic Decays

Novel Analysis Technique

- Measure directly lifetime ratio instead of indivdual lifetimes
- Make use of: D* mainly from B⁰,
 D⁰ mainly from B⁺
- ▲ Group events into 8 bins of
- Visible Proper Decay Length:
- ▲ Measure $\mathbf{r} = \mathbf{N}(\mu \mathbf{D}^*)/\mathbf{N}(\mu \mathbf{D}^0)$ in each bin
 - In both cases fit D^0 signal to extract $N(\mu D)$
 - Use slow pion only to distinguish Bo from B+ (no lifetime bias)
- Account for feed-down from D** using MC

DØ RunII Preliminary, Luminosity=250 pb⁻¹

B Lifetimes

<u>τ(B+)/τ(B0) Lifetime Ratio</u>

Use binned χ^2 fit of event ratios to determine $\tau(B^+)/\tau(B^0)$

DØ RunII Preliminary, Luminosity = 250 pb⁻¹

DO Preliminary result:

 $\tau(B^+)/\tau(B^0) = 1.093 \pm 0.021 \pm 0.022$

Extremely competitive with B factories

<u>Lifetimes from excl. B -> J/ψ K</u>

Use fully rec. B decays

 $c\tau_{Bu} = 498.1 \pm 9.9 (stat) \pm 2.4 (syst)$

 $c\tau_{Bd} = 461.3\pm15.4(stat)\pm2.4(syst)$

 $c\tau_{Bs} = 410.4 \pm 30.0 (stat) + 2.4 - 2.9 (syst)$

 $\tau_{\text{Bu}} \tau_{\text{Bd}} = \textbf{1.080} \pm \textbf{0.042}$

 $\tau_{\text{Bs/}}\tau_{\text{Bd}}\text{= 0.890}\pm\text{0.072}$

B_s->J/ψφ decay length

$X(3872) \rightarrow J/\Psi \pi^+ \pi^-$

Aug. 2003, Belle announced new particle at m~3872 MeV/c² Observed in B+ decays: B+ -> K+ X(3872), X(3872) \rightarrow J/ Ψ $\pi^+\pi^-$ N = 35.7±6.8, m = (3872.0±0.6±0.5) MeV/c²

X(3872) confirmed by CDF & D0:

$$N = 300 \pm 61$$

 $\Delta m = (768\pm4\pm4) \text{ MeV/c}^2$

$$N = 730 \pm 90$$

 $m = (3871.3\pm0.7\pm0.4) \text{ MeV/c}^2$

Five quark state: 4 quarks + 1 anti-quark flavour (anti-quark) ≠ flavour(quarks)
Predicted by Diakonov, Petrov, Polyakov (1997)
States observed so far:

Discuss first: ⊕⁺
mass ~ 1530 MeV, width < 15 MeV
Decays equally to nK⁺ and pK⁰

Θ⁺: Reported evidence in nK⁺

Θ⁺: Reported evidence in pK⁰

Θ⁺: Reported negative evidence

Θ⁺: Summary of evidence 10 pos., 3 neg. reports masses consistent?

Search at Tevatron

Experiments	Mass (MeV)	Width (MeV)	Observation
SPring-8 [6]	1540 ± 10	< 25	nK^+
SAPHIR [7]	$1540 \pm 4 \pm 2$	< 25	nK^+
CLAS-1 [8]	1542 ± 5	< 21	nK^+
CLAS-2 [9]	1555 ± 10	< 26	nK^+
DIANA [10]	1539 ± 2	< 9	$K^+ n o K^0_S p$
HERMES [11]	$1528 \pm 2.6 \pm 2.1$	17 ± 9 ± 3	pK_S^0
SVD [13]	$1526 \pm 3 \pm 3$	< 24	pK_S^0
Asratyan et al. [12]	1533 ± 5	< 20	pK_S^0
ZEUS [14]	$1521.5 \pm 1.5 \begin{array}{l} +2.8 \\ -1.7 \end{array}$	$6.1 \pm 1.6 \begin{tabular}{c} +2.0 \\ -1.4 \end{tabular}$	$pK_S^0,ar{p}K_S^0$
COSY-TOF [15]	1530 ± 5	< 18 ± 4	$pp \rightarrow \Sigma^+ p K_S^0$

All signals in 3-6 σ range

Search for $\Theta^+ o pK^0_S o p\,\pi^+\pi^-$

Use 2 energy ranges:

min.bias (23mio), jet20 (16mio)

Identify protons with ToF

Reconstruct reference states

measured velocity $\beta = v/c$

1.1

0.9

8.0

0.7

0.6

0.5

CDF Run II preliminary 180 pb1

minbias data

24000

22000 20000

18000

16000

14000

12000

10000

8000

6000

4000

Search for
$$\Theta^+ o pK^0_S o p\,\pi^+\pi^-$$

No evidence at CDF for narrow resonance CDF is working on limit for σ (Θ +/ Λ (1520))

The cousin of Θ^+ : Ξ^{--}

NA49 at CERN SPS (hep-ex/0310014) Observed in $\Xi\pi$ mass, N=67.5 events m = 1.862 ± 0.002 GeV

Search for Ξ (1860) at CDF:

- Search for

$$\Xi_{3/2}^{--} o \Xi^{-}\pi^{-}, \ \Xi_{3/2}^{0} o \Xi^{-}\pi^{+}$$

- CDF developed dedicated tracking of long-lived hyperons in Si. detector
- Clean sample of 40k Ξ (x20 stat. NA49)
- Use established $\Xi(1530)^0 o \Xi^-\pi^+$ as calibration signal

Search for **E(1860)** at CDF:

- No evidence for narrow signal found in 2 data samples (had. track & jets)

	NA49	CDF (90%CL)
$rac{N(\Xi^-\pi^+)}{N(\Xi(1530))}$	0.21	< 0.06
$rac{N(\Xi^-\pi^-)}{N(\Xi(1530))}$	0.24	< 0.03

Similar acceptance:

$$A = rac{\sigma(pp
ightarrow \Xi(1530)) \cdot a(\Xi(1530))}{\sigma(pp
ightarrow \Xi) \cdot a(\Xi)}$$

NA49: A ~ 0.068

CDF: A ~ 0.061

Search for Charmed Pentaquark

- March 2004: H1 at HERA:
- Evidence for Θ_c^0 : $|u u d d \bar{c}\rangle$
- Reconstructed in $\Theta_c^0 \rightarrow D^{*+}\bar{p}$ m=3099±3±5 MeV, N=51±11

CDF:

- Large sample of D*+ (0.5 mio)
- Use D^{**} -> $D^{*+} \pi$ as calibration mode (15k)

Search for Charmed Pentaguark

- Identify proton using ToF (p<2.75 GeV) and dE/dx (p>2.75 GeV)
 (~ 2σ separation each)
- No evidence of charmed pentaquark seen
- Combined upper limit: < 29 events (90% C.L.)

Near Future: B_S Oscillations

Why are we interested in B_s Oscillations?

Near Future: B_S Oscillations

Why are we interested in B_s Oscillations?

Want to measure:

B_s Oscillations

Tevatron only place to observe B_s oscillations until LHC

Difficult measurement (give CDF prospects):

Current conditions: fully rec. Bs→Dsπ

S = 1600 events/fb-1

S/B = 2/1

 $\varepsilon D^2 = 4 \% (SLT + SST + JQT)$

 $\sigma_t = 67 \text{ fs}$

Short term 500 pb⁻¹ (no improvement up to 2005)

 2σ (for $\Delta m_s = 15$ ps-1)

Reach the current indirect limit.

Cover the Standard Model favored range

Beyond SM favoured range (conserv. improvements)

5 σ if Δ ms = **18** ps⁻¹ with **1.8** fb-1

5 σ if Δ ms = 24 ps⁻¹ with 3.2 fb-1

CDF & D0 work towards B_s mixing with high priority

Towards B_S Oscillations

First Measurement of B^0 oscillations at D0 Use sample of semileptonic $B \rightarrow D^* \mu$ decays

Tagging procedure

- opposite side tight muon
- muon $p_T > 2.5 GeV/c$
- cos $\Delta\phi(\mu, B)$ < 0.5

Fit procedure

• Binned χ^2 fit

B⁰ Δφ=2.2

Preliminary results:

 $\Delta m_d = 0.506 \pm 0.055 \pm 0.049 \text{ ps}^{-1}$

Tagging efficiency: 4.8 +/- 0.2 % Tagging dilution: 46 +/- 4.2 %

One of the best measurements at a hadron collider

Towards B_S Oscillations

First Run II measurement of B^0 oscillations at CDF Use fully reconstructed B^0 -> J/ψ K* & B^0 -> $D^-\pi^+$ Use same side tagging

$$\Delta m_d = 0.55 \pm 0.10 \pm 0.01 \text{ ps}^{-1}$$

CDF flavour tagging studies:

Same-side (B⁰)

 $\varepsilon D^2 \approx (1.0 \pm 0.5)\%$

Muon tagging

 $\varepsilon D^2 \approx (0.7 \pm 0.1)\%$

JQT

 $\varepsilon D^2 \approx (0.42 \pm 0.02)\%$

OS-Kaon

in progress

The Future

Goal of present & future B physics:

- Test flavour changing interactions in all possible ways
 - => Theoretically clean modes versus experimental accessibility
- Measure sides and angles of CKM triangle in many ways
 - => Overconstrain triangle

The Future

Goal of present & future B physics:

- Test flavour changing interactions in all possible ways
 - => Theoretically clean modes versus experimental accessibility
- Measure sides and angles of CKM triangle in many ways
 - => Overconstrain triangle

The case for BTeV & LHCb

Overview of BTeV and LHCb

- BTev & LHCb are forward spectrometers at hadron colliders.
 - LHCb: LHC at CERN, first data 2007.
 - BTeV: Tevatron at Fermilab, first data 2009
- Fundamental idea: Separate b/c from background via decay length
 - This introduces the least bias.
 - Try to do this as early as possible in the trigger.
- Large samples of b quarks are available:
 - BTeV: $\sim 2 \times 10^{11}$ b-bbar pairs per year.
 - LHCb: ~1x10¹² b-bbar pairs per year.
- $e^+e^- Y(4S)$ at $\mathcal{L} = 10^{34}$ cm⁻² s⁻¹ yields ~2x10⁸ B's per year.
 - Require $\mathcal{L}=10^{36}$ cm⁻² s⁻¹ to be competitive.
- B_s, B_c & b-baryons are produced at hadron machines

Overview of BTeV and LHCb

Accelerator parameters and cross sections

	BTeV	LHC-b
Location	Tevatron, Fermilab	LHC, CERN
E_{CM}	2 TeV	14 TeV
Collisions	p-pbar	p-p
σ(b-bbar)	100 μb	500 μb
$\sigma(b-bbar)/\sigma(visible)^{\dagger}$	1/375	1/160
σ(c-cbar)	1.0 mb	3.5 mb
$\sigma(c-cbar)/\sigma(visible)^{\dagger}$	1/40	1/25
Peak Lumi	2 x 10 ³² cm ⁻² s ⁻¹	2 x 10 ³² cm ⁻² s ⁻¹
Integrated Lumi	2 fb ⁻¹ / year	2 fb ⁻¹ / year
b-bbar pairs/year	2×10^{11}	10 x 10 ¹¹

[†] Using σ (b-bbar)/ σ (total)=1/500 from BTeV TDR and σ (visible)/ σ (total)≈ 0.75 from Tevatron Run II handbook.

Overview of BTeV and LHCb

Why a forward detector?

- **Higher momentum**
 - Longer decay lengths
 - Less multiple scattering
- Use decay length to separate heavy flavour from background.

b-b correlation

- **High probability for both b hadrons** to be in the acceptance.
 - Critical for flavour tagging.

BTeV Detector

BTeV Detector

Key design features of BTeV:

- Magnet on the IR
 - Allows momentum measurement in the trigger.
- Precision vertex detector
 - Planar pixel arrays.
- Vertex trigger at Level 1.
 - Can trigger on final states with only hadrons.
- PbWO₄ Calorimeter
 - γ and π^0 reconstruction.
- Originally 2 arms
 - Lost one arm due to funding constraints.
- Design bunch crossing was 132 ns now 396 ns
 - Implies 3 times the pile up for the same luminosity.
 - Studies indicate degradations are ~10% in yield for same S/B.

- Strong Particle ID
 - Ring Imaging Cerenkov (RICH) detector.
 - Hadron and lepton ID!
 - Background rejection.
 - Flavor tagging.
- Excellent muon ID system
 - Redundant triggering of final states with muons.
- Fast, high capacity DAQ.
 - Can record a significant fraction of all B decays.

LHCb Detector

LHCb Detector

LHCb Re-Optimization:

- Sept. 2003: TDR for a reoptimized detector.
- Reduce material
 - Thinner devices and supports
 - Remove unneeded tracking and VELO stations.
 - Reduce multiple scattering and particle loss due to interactions in material.
- Remove magnet shield to allow B field in region of the Trigger Tracker (TT) and RICH 1.
- L1 Trigger:
 - Tracks use VELO + TT hits.
 - Crude momentum measurement from bend in the fringe field.
 - Low momentum tracks, which can have large scattering, do not contaminate the detached track trigger decision.

Comparison of BTeV and LHCb

Some technology choices:

	BTeV	LHCb
Magnetic field integral	2.6 T-m (center to end)	4 T-m (full length)
Vertex Tracker	Pixels	Silicon Strips
Downstream Tracker	Si Strip + Straws Tubes	Si Strip + Straw Tubes
Particle ID	RICH; 2 Radiators C_5F_{12} , C_4F_{10}	2 RICH; 3 Radiators Aerogel; C ₄ F ₁₀ ; CF ₄
EM Cal	PbWO ₄ Crystals	Shashlik: Pb-Scint
Hadronic Cal	-	Fe + Scintillating tiles
Muon System	Stainless steel prop tubes	MWPC: wire + cathode
Angular Acceptance	10 – 300 mr	15 – 300 mr

BTeV and LHCb Trigger

BTeV

- Beam crossing 2.5 MHz
- L1: 50 kHz
 - Find tracks in pixels.
 - Find vertices.
 - Cut on impact parameters
- L2: 5 kHz
 - Refine tracks in pixels
 - Refine vertices
 - Cut on impact parameters
- L3: 2.5 to 4 kHz
 - Rate depends on event size.
 - May use all detector info
 - Algorithms TBD. Goal is to be as open as possible. Will select some final states but will also accept more.
- Independent di-muon at L1.

LHCb

- Beam crossing: 40 MHz
 - 10 MHz with inelastic interactions
- **L0**: 1 MHz
 - Find clusters in calorimeter
 - Find tracks in μ system.
 - Cut on P_T (1 to 3 GeV).
 - Reject pile up.
- L1: 40 kHz
 - Find tracks using, VELO, TT and L1 info.
 - Find primary vertex.
 - Cut on and P_T and impact
 parameter of tracks.
- HLT: 200 Hz
 - May use all detector info.
 - Select final states.

Want to overconstrain CKM triangle Possible scenario:

Want to overconstrain CKM triangle Possible scenario:

Want to overconstrain CKM triangle Possible scenario:

Summary of Physics Reach (10⁷ s)

Reaction	Para-	LHC			BTeV		
	meter	Yield	S/B	Sensitivity [†]	Yield	S/B	Sensitivity [†]
$B^{o} \rightarrow \pi^{+}\pi^{-}$	Asym	26,000	>1.4		14,600	3	0.030
$B^o \rightarrow J/\psi K_S$,	sin(2β)	241,000	1.2	0.02	168,000	10	0.017
J/ψ → ℓ + ℓ -							
$B_s \rightarrow D_s K^-$	γ–2χ	5,400	>1	14°	7,500	7	8°
	≈γ						
$B_s \rightarrow D_s \pi^-$	X_S	80,000	3	<100 [†]	59,000	3	<75 [†]

[†] Sensitivity means either the error on the parameter or the limiting value which we can measure.

Warning: No check made that both use same assumptions about branching ratios.

[†] Upper limit for a measurement with 5 σ significance. $\sigma(x_s) < 0.02$ for most x_s .

Summary of Physics Reach (10⁷ s)

Reaction	Para-	LHC			BTeV		
	meter	Yield	S/B	Sensitivity [†]	Yield	S/B	Sensitivity [†]
$B^- \rightarrow D^\circ (K^+ \pi^-) K^-$	γ				170	1	13°
$B^- \rightarrow D^\circ (K^+ K^-) K^-$	γ				1,000	>10	
$B^0 {\longrightarrow} D^0(K\pi)K^{*_0}$		3,400	>2.0				
$B^0 \rightarrow D^0_{CP} bar K^{*0}$ $B^0 \rightarrow D^0_{CP} K^{*0} bar$	γ	590	>0.35	7° to 9° depending on γ.			
$B^- \rightarrow K_S \pi^-$	γ				4,600	1	< 4°+ theory
$B^{\circ} \rightarrow K^{+} \pi^{-}$	γ				62,100	20	errors

[†] Sensitivity means either the error on the parameter or the limiting value which we can measure.

Warning: No check made that both use same assumptions about branching ratios.

Summary of Physics Reach (10⁷ s)

Reaction	Para-	LHC			BTeV		
	meter	Yield	S/B	Sensitivity [†]	Yield	S/B	Sensitivity [†]
$B^{o} \rightarrow \rho^{+} \pi^{-}$	α	4,400	0.14	,	5,400	4.1	~4°
$B^{o} \rightarrow \rho^{o} \pi^{o}$	α				780	0.3	(For 1.4 years)
$B_s \rightarrow J/\psi \eta$,	sin(2χ)	7,000	>0.2		2,800	15	0.024
J/ψ → ℓ + ℓ -							
$B_s \rightarrow J/\psi \eta'$,					9,800	30	
$J/\psi \rightarrow \ell^+\ell^-$							
$B_s \rightarrow J/\psi \phi$	$\sin(2\chi)$	120,000		0.06^{\dagger}			
$B_s \rightarrow J/\psi \phi$	$\Delta\Gamma_{\rm S}/\Gamma_{\rm S}$			0.02 [†]			

[†] Sensitivity means either the error on the parameter or the limiting value which we can measure.

[†] Typical values. Exact values depend on assumptions about x_s , χ , $\Delta\Gamma_s/\Gamma_s$ and R_T . Warning: No check made that both use same assumptions about branching ratios.

Conclusions

- Wealth of new B physics results from CDF & D0
 - D0 demonstrates very competitive B physics program
 - Negative pentaquark searches from CDF
- CDF & D0 work towards measurement of B_s oscillations
- LHC-b well on the way towards first data in 2007
 - Many components already at CERN
 - Can do great physics with initial LHC luminosity
- BTeV expects first data in 2009
 - Funding (CD-0) approved by DOE
 - R&D is already well advanced. Final decisions in 2004

Conclusions

- Wealth of new B physics results from CDF & D0
 - D0 demonstrates very competitive B physics program
 - Negative pentaquark searches from CDF
- CDF & D0 work towards measurement of B_s oscillations
- LHC-b well on the way towards first data in 2007
 - Many components already at CERN
 - Can do great physics with initial LHC luminosity
- BTeV expects first data in 2009
 - Funding (CD-0) approved by DOE
 - R&D is already well advanced. Final decisions in 2004

"Anyone who keeps the ability to see beauty never grows old."

Franz Kafka

Conclusions

"God doesn't play dice with the universe." (Albert Einstein)

